11 november 2022
26.55 min
Nico Verdonschot

Verder dan beweging

Veelal wordt er in de orthopedie gebruik gemaakt van beelden zoals rontgenfoto’s, CT, of MRI. Deze technieken leveren een schat aan informatie op, maar vertellen soms weinig over hoe een patient al dan niet kan bewegen en waardoor die bewegingen eventueel belemmerd worden. In ons werk kijken we naar ‘bewegende beelden’ binnen het lichaam om afwijkingen beter kunnen onderscheiden. Op basis van die beelden kunnen we het spier-skelet systeem van een persoon nabootsten in de computer en kunnen we mogelijke chirurgische scenario’s nabootsen en de optimale behandeling voor een patient adviseren. We kijken dus  ‘Verder dan Bewegen’ maar proberen te doorgronden hoe afwijkingen ontstaan en hoe die te verhelpen zijn.

Prof. Verdonschot is a mechanical engineering and is an active member of the biomechanical community for over 3 decades. He is Scientific Director of the Technical Medical Centre of Twente University in the Netherlands and full professor at the Orthopaedic Research Laboratory of the Radboud University Medical Centre the Orthopaedic Research Laboratory, Nijmegen, the Netherlands. Furthermore, he is visiting professor at the Politecnico di Milano, Italy and has an honorary doctorate of Aalborg University, Denmark. He is recipient of ERC Advanced Grant, entitled: ‘Biomechanical diagnostic, pre-planning and outcome tools to improve musculoskeletal surgery’ (BioMechTools).

He published over 350 articles in the field of orthopaedic biomechanics. Furthermore, he is past-president of the European Orthopaedic Research Society and of the International Society for Technology in Arthroplasty (ISTA) and one of the founders of the Section ‘Orthopaedic Implants’ of the Orthopaedic Research Society.

His group has extensive expertise on computer modeling of the human musculoskeletal system, bones and the functioning of orthopaedic implants. Together with orthopaedic companies his group has developed a number of computer simulations that simulate various aspects of orthopedic implant failure. With the same type of computer simulation techniques, CT-based bone strength can be estimated. This is of particular interest for patients suffering from metastasized cancer with weakened bones. These simulations can be applied to novel implants at a pre-clinical stage; before patients are put at risk. His group also utilizes multi-modal imaging techniques (ultrasound, MRI, CT, X-Ray) computer models of a human body can be generated. With these models muscle activation patterns and forces can be estimated. To enable application at a patient level, personalized models with various pathologies are under development. Utilization of AI techniques are implemented to speed-up the generation of these personalized models.